A Hierarchical Self-Organizing Map Model in Short-Term Load Forecasting

نویسندگان

  • Otávio Augusto S. Carpinteiro
  • Alexandre P. Alves da Silva
چکیده

This paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up of two self-organizing map nets — one on top of the other. It has been successfully applied to domains in which the context information given by former events plays a primary role. The model was trained and assessed on load data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next 24 hours. The paper presents the results, and evaluates them. Keywords— short-term load forecasting; self-organizing map; neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchical Neural Model in Short-Term Load Forecasting

This paper proposes a novel neural model to the problem of short-term load forecasting (STLF). The neural model is made up of two self-organizing map (SOM) nets—one on top of the other. It has been successfully applied to domains in which the context information given by former events plays a primary role. The model was trained on load data extracted from a Brazilian electric utility, and compa...

متن کامل

A HIERARCHICAL SELF - ORGANIZING MAP MODEL IN SHORT - TERM LOADFORECASTINGOt

This paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up of two self-organizing map nets | one on top of the other. It has been successfully applied to domains in which the context information given by former events plays a primary role. The model was trained and assessed on load data extracted from a Brazilian electric utility. It was ...

متن کامل

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Electricity Peak Load Forecasting with Self-Organizing Map and Support Vector Regression

This paper aims to study the short-term Peak Load Forecasting (PLF) by using Kohonen Self-Organizing Map (SOM) and Support Vector Regression (SVR). We first adopt a SOM network to cluster the input data set into several subsets in an unsupervised learning strategy. Then, several SVRs for the next day’s peak load are used to fit the training data of each subset in the second stage. In the numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Robotic Systems

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2001